数学研发论坛

 找回密码
 欢迎注册
12
返回列表 发新帖
楼主: kastin

[转载] 函数方程的解析解

[复制链接]
发表于 2019-7-5 12:46:20 | 显示全部楼层
wayne 发表于 2019-7-5 08:43
对于任意一个定义在$(0,+\infty)$的实函数$h(x)$,我们定义关系$h(-x) = h(x)(1-h(x))$延拓到$(-\infty,+\i ...


这个想法很好,可惜这样的实解析函数只有h(x)=0。
解析函数的一个重要特点是对部分区域成立的公式对于整个区域都成立,所以如果
$h(-x) = h(x)(1-h(x))$, 那么必然也有$h(x)=h(-x)(1-h(-x))$
于是我们得出必要条件
$(1-h(x))(1-h(-x))=1$,或者写成$(h(x)-1)h(-x)=h(x)$即$h(-x)={h(x)}/{h(x)-1}$,代入原始条件得出
$h(x)((1-h(x))^2+1)=0$

评分

参与人数 1威望 +3 金币 +3 贡献 +3 经验 +3 鲜花 +3 收起 理由
wayne + 3 + 3 + 3 + 3 + 3

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-7-10 11:27:29 | 显示全部楼层
令 `h(x)=1/2-f(x)`,于是化为二次映射 `h(x+1)=h(x)^2+1/4`,这个类似的问题论坛之前讨论过,在自然数集上的 `h(x)` 结果形式为 `[c^{2^x}]`,其中 `c` 为某个大于1的无理数(当然,它需要初值来计算)。
参见http://mathworld.wolfram.com/QuadraticMap.html

根据链接中的(23)和(26)可知,在自然数集上f(x)不存封闭形式的解,这是否说明在实数上也不存在?

点评

@math,通过逐次解高阶微分方程边值问题来看,其趋势表明,解析解趋向于零解。通过直接将泰勒级数代入迭代方程,比较系数求方程组,各个系数也趋向于零解。我怀疑,解析解只有零解。  发表于 2019-7-11 13:16
不存在封闭形式解是很自然的,现在问题是是否有解析解  发表于 2019-7-10 11:59
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 4 天前 | 显示全部楼层
现在我们还无法知道这个解析函数非平凡解的存在性。
但是如果存在这样的解析函数,那么必然会存在一系列完全不同的满足条件的解析函数,因为
如果解析函数f(x)满足f(x+1)=f(x)(1-f(x)),那么任意选择周期为1的解析函数g(x),于是定义函数
h(x)=f(x+g(x)),那么必然有
h(x+1)=f(x+1+g(x+1))=f(x+1+g(x))=f(x+g(x))(1-f(x+g(x)))=h(x)(1-h(x))
由于周期为1的g(x)实在太多了,这充分说明了我们无法仅利用这么简单的一个递推式来确定这个解析函数。

点评

我这个分析说明不是可以通过添加几个初始值可以确定的  发表于 昨天 08:48
增加一个初值条件,比如f(0)=-1  发表于 前天 19:34
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-7-19 21:16 , Processed in 0.043021 second(s), 15 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表